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Abstract 

In this paper, we consider some Laplace type problems for lattices with axial 
symmetry and different types of obstacles. We compute the probability that a 
segment of random position and constant length intersects a side of the lattice. 

1. Cell with Two Rectangles and Eight 
 Triangles Obstacles 

Let ( )mba ;,1ℜ  be the lattice with the fundamental cell ( )1
0C  

composed of a rectangle ( )1
01C  of sides 4a and b and a rectangle ( )1

02C  of 

sides 2a and b and with eight triangles isosceles obstacles of sides ,2
m  

,2
2,2

mm  with ( )bam ,2min0 ≤≤  (Figure 1). 
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Figure 1. 

We have 

( ) ,24area
21

01
mabC −=  

( ) .22area
21

02
mabC −=  

Considering a segment s of random position and of constant length 
<l ( ),,2min mbma −−  called body test, we want to compute the 

probability that the segment intersects a side of the lattice, therefore, the 

probability ( )1
intP  that the segment s intersects a side of the fundamental 

cell ( ).1
0C  
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The position of the segment s is determinated by its middle point O 
and by the angle ϕ  that it forms with the side BG (or DE )  in the cell 

( ).1
0C  

In order to compute the probability ( ) ,1
intP  we consider before the 

limited positions of the segment s, for a fixed value of the angle ,ϕ  

situated in ( )1
01C  and then the limited positions of the segment s, for the 

same value of the angle ,ϕ  situated in ( )1
02C  (Figure 2). 

 

Figure 2. 
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Denoting with ( )
( )

1
01 ,C ϕ  the polygon determined from the limited 

positions of the segment s in the first case and with 
( )

( )
1
02C ϕ  in the second 

case. 

Considering a result obtained in the previous paper [1], we can write 

( )
( )

21
01area 4 2

mC abϕ = −  

2
cos 4 sin sin 2 ,2 2

m lbl a l
  − ϕ + − ϕ − ϕ  

   
 

( )
( )

21
02area 2 2

mC abϕ = −  

2
cos 2 sin sin 2 .2 2

m lbl a l
  − ϕ + − ϕ − ϕ  

   
 (1) 

Denoting with ( ) ,1
iM  the set of segments s that have the middle point 

O in ( )( )ϕ1
0iC  and with ( ) ,1

iN  the set of segments s completely contained in 
( ) ( ),2,11
0 =iC i  we have [3] 

( )
( )( ) ( )( )
( )( ) ( )( ) ,1 1

2
1

1

1
2

1
11

int MM
NN

P
µ+µ

µ+µ
−=  (2) 

where µ  is the Lebesgue measure in Euclidean plane. 

In order to compute the measures ( )( )1
iMµ  and ( )( ),1

iNµ  we use the 

Poincaré kinematic measure [2] 

,ϕ= ddydxdK   

where x, y are the coordinates of the middle point O of the segment s and 
ϕ  is the defined angle. 

Because ,2,0 



 π∈ϕ  we have 
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( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

1
01

2

,0

1
1  

( )( ) ,242area
2

0

1
01

2









−π=ϕ= ∫

π

mabdC  

( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

1
02

2

,0

1
2  

( )( ) ,222area
21

02
0

2









−π=ϕ= ∫

π

mabdC  (3) 

and considering the relations (1), 

( )( )
{( )

( )
( )}

2

1
01

1
1

0 ,x y C

N d dxdy

π

∈ ϕ

µ = ϕ∫ ∫∫  

 
( )

( )
2 21

01
0

area 42 2
mC d ab

π

 π = ϕ ϕ = −       ∫  

,224
2llmba +





 −+−  

( )( ) 







−π=µ 222

21
2

mabN  

.222
2llmba +





 −+−  (4) 

From the relations (2), (3), and (4) give us 
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( ) ( )
( )

.
6

2262
2

2
1

int mab
llmbaP

−π

−−+
=  (5) 

For ,0=m  the obstacles become points and the probability (5) 

becomes 

( ) ( ) ,3
32 2

1
int Pab

llbaP =
π

−+
=  (6) 

therefore, the Laplace probability for a rectangle of sides 3a and b that 

represented the media of the rectangles ( )1
01C  and ( ).1

02C  

2. Cell with Three Rectangles and Twelve  
Triangles Obstacles 

Let ( )mba ;,2ℜ  be the lattice with the fundamental cell ( )2
0C  

composed of a rectangle ( )2
01C  of sides 2a and b, a rectangle ( )2

02C  of sides 

4a and b, and a rectangle ( )2
03C  of sides 6a and b and with twelve triangles 

isosceles obstacles of sides 2
2,2,2

mmm  (Figure 3). 
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Figure 3. 

We have 

( ) ,22area
22

01
mabC −=  

( ) ,24area
22

02
mabC −=  

( ) .26area
22

03
mabC −=  
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Considering a segment s of random position and of constant length 
<l ( ),,2min mbma −−  called body test, we want to compute the 

probability that this segment intersects a side of the lattice, therefore, the 
probability ( )2

intP  that the segment s intersects a side of the fundamental 

cell ( ).2
0C  

The position of the segment s is determinated by its middle point O 
and by the angle ϕ  that it forms with the side BN in the cell ( ).2

0C  

In order to compute the probability ( ),2
intP  we consider the limited 

positions of the segment s, for a fixed value of ,ϕ  situated in the rectangle 
( ) ( ).3,2,12
0 =iC i  

Denoting with ( )
( ) ( )

2
0 1, 2, 3 ,iC iϕ =  the polygon determined from      

the limited positions of the segment s situated in the rectangle 
( ) ( ).3,2,12
0 =iC i  

 

Figure 4. 

Considering a result obtained in the previous paper [1], we can write 

( ) 22
01area 2 2

mC ab= −  
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2
cos 2 sin sin 2 ,2 2

m lbl a l
  − ϕ + − ϕ − ϕ  

   
 

( ) 22
02area 4 2

mC ab= −  

2
cos 4 sin sin 2 ,2 2

m lbl a l
  − ϕ + − ϕ − ϕ  

   
 

( ) 22
03area 6 2

mC ab= −  

2
cos 6 sin sin 2 .2 2

m lbl a l
  − ϕ + − ϕ − ϕ  

   
 (7) 

Denoting with ( ),2
iM  the set of segments s that have the middle point 

O in ( )
( )

2
01C ϕ  and with ( ),2

iN  the set of segments s completely contained in 
( ) ( ),3,2,12
0 =iC i  we have [3] 

( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ,1 2

3
2

2
2

1

2
3

2
2

2
12

int MMM
NNN

P
µ+µ+µ

µ+µ+µ
−=  (8) 

where µ  is the Lebesgue measure in Euclidean plane. 

In order to compute the measures ( )( )2
iMµ  and ( )( ),2

iNµ  we use the 

Poincaré kinematic measure [2] 

,ϕ= ddydxdK   

where x, y are the coordinates of the middle point O of the segment s and 
ϕ  is the defined angle. 

We have ,2,0 



 π∈ϕ  therefore; 

( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

2
01

2

,0

2
1  
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( )( ) ,222area
22

01
0

2









−π=ϕ= ∫

π

mabdC  

 ( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

2
02

2

,0

2
2  

( )( ) ,242area
22

02
0

2









−π=ϕ= ∫

π

mabdC  

 ( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

2
03

2

,0

2
3  

( )( ) ,262area
22

03
0

2









−π=ϕ= ∫

π

mabdC  (9) 

and considering the relations (7), 

 ( )( )
{( )

( )
( )}

2

2
01

2
1

0 ,x y C

N d dxdy

π

∈ ϕ

µ = ϕ∫ ∫∫  

( )
( )

2
2
01

0

area C d

π

 = ϕ ϕ 
 ∫  

[ ϕ−







−π= ∫

π

cos222

2

0

2
blmab  

 ]ϕ−ϕ




 −+ 2sin2sin22

2llma  
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,222222
22 llmbamab +





 −+−








−π=  

( )( ) 







−π=µ 242

22
2

mabN  

,224
2llmba +





 −+−  

( )( ) 







−π=µ 262

22
3

mabN  

.226
2llmba +





 −+−  (10) 

From the relations (8), (9), and (10) follow 

( ) .

2
312

32
33122

2

2
2

int









−π

−




 −+

=
mab

llmba
P  (11) 

For ,0=m  the obstacles become points and the probability (11) is 
written as 

( ) ,4
42 2

1 ab
lbaP

π
−+

=  

therefore, the Laplace probability for a rectangle of sides 4a and b that 
represented the media of the rectangles ( ) ( ),, 2

02
2

01 CC  and ( ).2
03C  

3. Cell with Two Rectangles and Eight 
 Circular Sectors Obstacles 

Let ( )mba ;,3ℜ  be the lattice with the fundamental cell ( )3
0C  

composed of a rectangle ( )3
01C  of sides 4a and b and a rectangle ( )3

02C  of 

sides 2a and b and with eight obstacles quarters of a circle of radius 2
m  

(Figure 5). 
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Figure 5. 

We have 

( ) ,44area
23

01
mabC π−=  

( ) .42area
23

02
mabC π−=  

Considering the same body test of the point 1, we want to compute 
the probability that the segment s intersects a side of the lattice, 
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therefore, the probability ( )3
intP  that the body test intersects a side of the 

fundamental cell ( ).3
0C  

In order to compute the probability ( ),3
intP  we consider before the 

limited positions of the segment s, for a fixed value of the angle ,ϕ  

situated in ( )3
01C  and then the limited positions of the segment s, for the 

same value of  the angle ,ϕ  situated in ( )3
02C  (Figure 6). 

 

Figure 6. 
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Let ( )
( )

3
01C ϕ  be the polygon determined from the limited positions in 

the first case and ( )
( )

3
02C ϕ  in the second case. 

Considering a result obtained in the previous paper [1], we can write 

( )
( )

2 23
01area 4 14 4

m mC ab π
= − − − π  

[ ( ) ]
2

cos 4 sin sin 2 ,2
lbl a m l− ϕ + − ϕ − ϕ  

( )
( )

2 23
02area 2 14 4

m mC ab π
= − − − π  

[ ( ) ]
2

cos 2 sin sin 2 .2
lbl a m l− ϕ + − ϕ − ϕ  (12) 

Denoting with ( )3 ,iM  the set of segments s that have the middle point 

O in ( )3
0iC  and with ( )3 ,iN  the set of segments s completely contained in 

( )3
0iC ( )1, 2 ,i =  we have [3] 

( )
( )( ) ( )( )
( )( ) ( )( ) .1 3

2
3

1

3
2

3
13

int MM
NN

P
µ+µ

µ+µ
−=  (13) 

With the notations of the point 1, we have 

( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

3
01

2

,0

3
1  

( ) ,442area2
23

01 






 π−π=π= mabC  

( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

3
02

2

,0

3
2  
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( ) ,422area2
23

02 






 π−π=π= mabC  (14) 

and considering the relations (12), 

( )( )
{( )

( )
( )}

2

3
01

3
1

0 ,x y C

N d dxdy

π

∈ ϕ

µ = ϕ∫ ∫∫  

( )
( )

2
3
01

0

area C d

π

 = ϕ ϕ 
 ∫  

( ) 22 142 4 8
mmab

  π − ππ π
= − −  

 
 

[ ( ) ]
2 2

0

cos 4 sin sin 22
lbl a m l d

π

− ϕ + − ϕ − ϕ ϕ∫  

( ) ( )
22 214 4 ,2 4 8 2

mm lab a b m l
   π − ππ π

= − − − + − −         
 

 

( )( ) ( ) 223
2

122 2 8
mmN ab

  π − ππ π
µ = − −  

 
 

( )
2

2 .2
la b m l

 
− + − − 
  

 (15) 

The relations (13), (14), and (15) give us 

( )
( ) [ ( ) ]

.

26

2342
1

2

2
2

3
int








 π−π

−−++
π−π

=
mab

llmbam
P  (16) 
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For ,0=m  the obstacles become points and the probability (16) 

becomes 

( ) ( ) .3
32 2

3
int Pab

llbaP =
π

−+
=  

4. Cell with Three Rectangles and Twelve  
Circular Sectors Obstacles 

Let ( )mba ;,4ℜ  be the lattice with fundamental cell ( )4
0C  composed of 

a rectangle ( )4
01C  of sides 2a and b, a rectangle ( )4

02C  of sides 4a and b and   

a rectangle ( )4
03C  of sides 6a and b and with twelve obstacles quarters of a 

circle of radius 2
m  (Figure 7). 

 

Figure 7. 

We have 

( ) ,42area
24

01
mabC −=  
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( ) ,44area
24

02
mabC −=  

( ) .46area
24

03
mabC −=  

Considering the same body test s of the point 1, we want to compute 
the probability ( )4

intP  that the segment s intersects a side of the 

fundamental cell ( ).4
0C  

In order to compute this probability, we consider the limited positions 
of the segment s, for a fixed value of ,ϕ  situated in the rectangle ( )4

0iC  

( ),3,2,1=i  and let ( )
( )

4
0iC ϕ  be the polygon determined from these 

positions (Figure 8). 

 

Figure 8. 

In the previous paper [1] give us 

( ) 24
01area 2 4

mC ab= −  

[ ( ) ]
2

cos 2 sin sin 2 ,2
lbl a m l− ϕ + − ϕ − ϕ  
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( ) 24
02area 4 4

mC ab= −  

[ ( ) ]
2

cos 4 sin sin 2 ,2
lbl a m l− ϕ + − ϕ − ϕ  

( ) 24
03area 6 4

mC ab= −  

[ ( ) ]
2

cos 6 sin sin 2 .2
lbl a m l− ϕ + − ϕ − ϕ  (17) 

Similarly to the formula (2), we can write 

( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ,1 4

3
4

2
4

1

4
3

4
2

4
14

int MMM
NNN

P
µ+µ+µ

µ+µ+µ
−=  (18) 

with 

 ( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

4
01

2

,0

4
1  

( ) ,422area2
24

01 






 π−π=π= mabC  

 ( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

4
02

2

,0

4
2  

( ) ,442area2
24

02 






 π−π=π= mabC  

 ( )( )
{( ) ( ) }

dxdydM
Cyx
∫∫∫
∈

ϕ=µ

π

4
03

2

,0

4
3  

  ( ) ,462area2
24

03 






 π−π=π= mabC  (19) 
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and considering the relations (17), 

( )( )
{( )

( )
( )}

2

4
01

4
1

0 ,x y C

N d dxdy

π

∈ ϕ

µ = ϕ∫ ∫∫  

( )
( )

2
4
01

0

area C d

π

 = ϕ ϕ 
 ∫  

2
22 4

mab
 π

= −  
 

 

( )
2

2 ,2
la b m l− + − +  

( )( )
24

2 42 4
mN ab

 π
µ = −  

 
 

( )
2

4 ,2
la b m l− + − +  

( )( )
24

3 62 4
mN ab

 π
µ = −  

 
 

( )
2

6 .2
la b m l− + − +  (20) 

The relations (18), (19), and (20) give us 

( )
( ) ( )

.

44

424
1

2

2
2

4
int








 π−π

−−++
π−π

=
mab

llmbam
P  (21) 

For ,0=m  the obstacles become points and the probability (21) 

becomes the probability 1P of the previous section. 
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